Extending Johnson’s and Morita’s homomorphisms to the mapping class group

نویسنده

  • Matthew B. Day
چکیده

We extend certain homomorphisms defined on the higher Torelli subgroups of the mapping class group to crossed homomorphisms defined on the entire mapping class group. In particular, for every k ≥ 2, we construct a crossed homomorphism ǫk which extends Morita’s homomorphism τ̃k to the entire mapping class group. From this crossed homomorphism we also obtain a crossed homomorphism extending the kth Johnson homomorphism τk to the mapping class group. D. Johnson and S. Morita obtained their respective homomorphisms by considering the action of the mapping class group on the nilpotent truncations of the surface group; our approach is to mimic Morita’s construction topologically by using nilmanifolds associated to these truncations. This allows us to take the ranges of these crossed homomorphisms to be certain finite-dimensional real vector spaces associated to these nilmanifolds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Type 3-manifold Invariants and the Structure of the Torelli Group I

Using the recently developed theory of finite type invariants of integral homology 3-spheres we study the structure of the Torelli group of a closed surface. Explicitly, we construct (a) natural cocycles of the Torelli group (with coefficients in a space of trivalent graphs) and cohomology classes of the abelianized Torelli group; (b) group homomorphisms that detect (rationally) the nontriviali...

متن کامل

Global fixed points for centralizers and Morita’s Theorem

We prove a global fixed point theorem for the centralizer of a homeomorphism of the two dimensional disk D that has attractor-repeller dynamics on the boundary with at least two attractors and two repellers. As one application, we show that there is a finite index subgroup of the centralizer of a pseudo-Anosov homeomorphism with infinitely many global fixed points. As another application we giv...

متن کامل

Quasi-homomorphisms on Mapping Class Groups

We refine the construction of quasi-homomorphisms on mapping class groups. It is useful to know that there are unbounded quasihomomorphisms which are bounded when restricted to particular subgroups since then one deduces that the mapping class group is not boundedly generated by these subgroups. In this note we enlarge the class of such subgroups. The generalization is motivated by consideratio...

متن کامل

Quasi-homomorphisms and Stable Lengths in Mapping Class Groups

We give elementary applications of quasi-homomorphisms to growth problems in groups. A particular case concerns the number of torsion elements required to factorise a given element in the mapping class group of a surface.

متن کامل

Median Structures on Asymptotic Cones and Homomorphisms into Mapping Class Groups

We prove that every asymptotic cone of a mapping class group has a bi-Lipschitz equivariant embedding into a product of real trees, with image a median subspace. We deduce several applications of this, one of which is that a group with Kazhdan’s property (T) can only have finitely many pairwise non-conjugate homomorphisms into a mapping class group.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008